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Abstract: The potential of support vector machines (SVMs) for the substructure elucidation of 
infrared spectra have been investigated.  The trained SVMs can identify the 16 substructures with 
high accuracy. 
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In the past decades, several methods have been applied to the automatic interpretation of 
infrared spectra.  These methods can be classified into several groups: spectral libraries 
search, knowledge-based systems, pattern recognition techniques.  The pattern 
recognition techniques were widely used in the past decades, dominated by artificial 
neural networks (ANNs)1-7.  However, the prediction accuracy of present substructures 
is not very satisfying, and only for a few substructures can exceed 90%2,5.   

In this paper, support vector machine (SVM) was proposed as a tool for the 
substructure elucidation of infrared spectra.  The SVM solution of Vapnik is known as a 
very good tool for classification problems with excellent generalization ability8-15.  In 
distinction to the classical neural networks, SVM always seeks global optimum and can 
avoid over-fitting8.  In recent years, it has demonstrated excellent performance in a 
variety of pattern recognition problems, such as text classification, face detection and 
protein fold recognition.  

A set of 823 compounds from the OMNIC Fourier transform infrared (FTIR) 
database was used for training and testing with respect to the presence or absence of 16 
substructures.  These 16 substructures were defined on the basis of infrared absorption 
frequencies.  The training and test sets were selected simply by taking the 
even-numbered samples and the odd-numbered samples, and were consisted of 411 and 
412 FTIR spectra, respectively.  The present percentage ranges from 1.22% to 46.7% in 
the training set, and 1.46% to 46.6% in the test set. 

The spectra ranging from 449 to 4000 cm-1 were divided into 307 points of equal 
interval.  The 307 data points were used as input vector.  1 for presence and -1 for 
absence for substructures were encoded as output vector.  When the output is 1, it 
means that the substructure is present, else means that the substructure is absent.  
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The SVMs used in this paper were trained using the sequential minimal 
optimization (SMO) approach16.  The SVM algorithm was implemented in MATLAB 
6.5.  Radial Gaussian kernel was used in this paper10,11.  Because both training and test 
sets can learn strongly toward absent groups, the prediction of absent groups did not pose 
problems5.  Parameters (C and Sigma) influencing SVMs’ training and prediction of 
substructures from infrared spectra were scrutinized for the maximal achievable present 
prediction rate.  C is the regularization parameter and Sigma is the width parameter of 
the kernel.  When the present prediction rate is very high but the absent prediction rate 
is very low, the striving for the best possible present prediction is relaxed a little in order 
to gain a higher accuracy of the absent prediction.  For all C, Sigma pairs, the SVM was 
trained with training set and evaluated for test set to get the optimal prediction rate.  
Monitoring the best prediction rates during training allowed the SVM with the highest 
generalization capabilities. 

The prediction ability of the SVMs was evaluated by Pf and Af: 
Pf (recognition accuracy of presence) = the number correctly classified as present / 

the number present; Af (recognition accuracy of absence) = the number correctly 
classified as absent / the number absent. 

The Pf and Af of the 16 substructures of the training and test set are shown in Figure 
1.  We can see from Figure 1 that, the SVMs can recognize the 16 substructures in the 
training set with perfect accuracy: the Pfs of 14 substructures are 1, the Afs of the 16 
substructures are all closer to 1.  The trained SVMs can predict the 16 substructures in 
the test set with high accuracy: most of the Afs of the test set are as good as those of the 
training set; 12 out of 16 Pfs are above 0.900, and the other four are still higher than 
0.800.  The values of Pf and Af in training and test set also reflect SVMs’ excellent 
generalization ability and strong robust.  From the high values of Pf and Af we can come 
 

Figure 1  The Pf and Af of the substructures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Note: P1: the Pf of the training set, P2: the Pf of the test set, A1: the Af of the training set, A2: the 
Af of the test set, 1 -NH, 2 C-N, 3 C=C, 4 C≡N, 5 -OH (alcohol), 6 Ar-OH, 7 -OH (hydroxyl), 8 C6 
aromatic, 9 C-O-C, 10 C(CO)C, 11 (CO)H, 12 (CO)OH, 13 (CO)OR, 14 (CO)NH, 15 (CO)Cl, 16 
(CO). ) 
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to the conclusion that SVM approach is a powerful tool for the interpretation of infrared 
spectra.   

The discrimination ability of SVM is correlated with the infrared absorption of 
substructures.  As expected, substructures that show very distinctive characteristic 
infrared absorptions could be discriminated by the SVM quite easily (e.g., esters, 
carboxylic acids and C6 aromatic).  Substructures without distinctive infrared 
absorptions are less well recognized by SVM (e.g., double band). 
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